01
鸡兔同笼问题
【含义】
这是古典的算术问题。已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】
第一鸡兔同笼问题:
✦假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)
✦假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
✦假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
✦假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
02
解题思路和方法
解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;
如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:
鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?
假设笼子里全部都是鸡,每只鸡有2只脚,
那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,
一共多了94-70=24(只),
则兔子有24÷2=12(只),
那么鸡有35-12=23(只)。
例2:
动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?
解:
假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只。
因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,
那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,
所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
例3:
李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。鸡和兔一共有多少只?
解:
根据题意可得:前后鸡的总只数=前后兔的总只数。
把1只鸡和1只兔子看做一组,共有6条腿。
前后鸡和兔的总腿数有144+156=300(条)
所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
例4:
一次数学考试,只有20道题。做对一题加5分,做错一题倒扣3分(不做算错)。
乐乐这次考试得了84分,那么乐乐做对了多少道题?
解:
如果20题全部做对,应该得20×5=100(分),而实际得了84分,少了100-84=16(分)。
做错一题和做对一题之间,相差5+3=8(分),
所以少了的16分,也就是做错了16÷8=2(题)。
一共20题,所以乐乐做对了20-2=18(题)。
我是超人老师,每天为大家更新小学、初中资料。如果觉得好的话,记得关注我哦。
免责声明:本文内容来自用户上传并发布,站点仅提供信息存储空间服务,不拥有所有权,信息仅供参考之用。